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ABSTRACT

The need to make manufacturing, operation, and support of airborne vehicles safer and more efficient forces engineers and

scientists to look for lighter, cheaper, more reliable technologies. Light weight, immunity to EMI, fire safety, high bandwidth,
and high signal fidelity have already made photonics in general and fiber optics in particular an extremely attractive medium

for communication purposes. With the fiber optics serving as a central nervous system of the vehicle, generation, detection,

and processing of the signal occurs at the peripherals that include smart structures and devices.

Due to their interdisciplinary nature, photonic technologies cover such diverse areas as optical sensors and actuators,

embedded and distributed sensors, sensing schemes and architectures, harnesses and connectors, signal processing and

algorithms. The paper includes a brief description of work in the photonic area that is going on at NASA, especially at the
Glenn Research Center (GRC).

Keywords: Fiber optics, photonics, sensing, actuation, smart systems, signal processing, vehicle health management

1. INTRODUCTION

Use of optical technology on aerospace vehicles has been attracting scientists and engineers for years. Many of them saw an
advantage in the replacement of traditional electrical wires with optical fibers. The replacement, they argued, would result in

lighter and safer systems. Lower weight, immunity to EMI, and high signal fidelity were the main arguments that

accompanied the introduction of such NASA and DOD programs as Fiber Optic Control Sensors Integration (FOCSI), Fly-
by-Light ! Power-by-Wire (FBL/PBW), and others. TM These programs ended with successful demonstrations of photonic
technologies and showed the feasibility of the using optical cables, sensors and interfaces on military and commercial

aircraft. However, the early successes revealed problems that formed a barrier to further implementation of photonic
technologies. A high cost of individual components and harsh environment these components were subjected to are just
some of them.

Fiber optics has also found its way into aircraft avionics as a medium for high data rate communication bus. Security of
communications, high signal fidelity, and its ability to move around large blocks of information with a significant speed

helped the 20 Mbit/sec 1773 bus to become a backbone of modern aircraft communication system. The photonic technology
developed in response to requirements from the telecommunication industry has produced a number of new components and

system configurations such as fiber optic Bragg gratings, vertical cavity surface emitting diodes (VCSEL), and dense
wavelength division multiplexing (DWDM).

Meanwhile, a business pressure has forced the aerospace industry to look for new ways to increase productivity and reduce

operational cost without sacrificing safety of the public on the ground, passengers, and the crew. The aircraft industry in an
attempt to cut costs looked into new ways to reduce the downtime and to streamline the process of identifying and replacing
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faultypartsandcomponents.Asaresult,therehasbeenanincreasedadvocacyforaircraftmaintenanceondemandrather
thanbyschedule.Inthereusablelaunchandspacetransportationvehicleareas,abattleforeachpoundofusefulpayloadhas
ledtointroductionofsuchtechnologiesasMEMS,smartstructures,nano-systemsandphotonics:'6Thesafetyissuesrelated
topossiblesparkingandshortcircuitsalsoattractedattentiontoopticalfibersasapossiblereplacementforelectricalwires.

Thus,anecessitytoreduceweightandenhancesafetyofthevehiclecoupledwithrecentadvancesofcommunication
technology,allowedphotonicstoposeitselfasatechnologythatcouldrespondtorequirementsoftheaerospaceindustry.

Thispaperidentifies and reviews photonic technologies that either are becoming part of or are competing with existing

technologies to be used in smart systems and structures. A special emphasis is made on the challenges these technologies

face. In describing photonic technologies a distinction wiI1 be made between those that are on a relatively high technology
readiness level and emerging technologies. This paper also describes major vehicle systems that will benefit from using

photonics.

2. IMPLEMENTATION OF PHOTONIC TECHNOLOGIES

Introduction of optical fibers as a principal medium for transmitting information on an aerospace vehicle has brought benefits
of lower weight and enhanced safety. Also it brought a capability to communicate rapidly between various peripheral devices

and move around large blocks of information at a high speed. Thus, benefits of using photonics are the most visible at a

system level. The implementation of photonic technologies, however, may be introduced on every level including
components, signal processing, interfacing, system integration, and testing, Each of the levels requires its own technology

development.

2.1. Sensors and Actuators

Smart systems incorporate sensors, actuators, power converters, interfaces, signal processing elements, and other components

that together provide functions necessary for assessing the flight and safety environment and generating the most favorable
response to meet the mission objectives. Various types of sensors and sensing schemes have been developed over the past
decade. Descriptions of their specific configurations and principles of operations may be found elsewhere. 7' s Among a great

variety of sensors, those that operate in the wavelength domain are especially attractive because of their inherent multiplexing

capabilities. The feasibility of using fiber optic Bragg gratings and Fabry-Perot interferometers in aerospace applications has
been demonstrated. 9' 10

Actuation plays a special role in any active system as a power conversion element. In aerospace applications the incoming
electrical or hydraulic power is, in most cases, converted to mechanical power. Piezo-electric elements are examples of
conversion of applied electrical power to vibrational energy.l i In a smart system the end result or reaction of the system to the
environment would be to change shape, position, or material properties of the corresponding component. Piezoelectrically

driven actuators for aircraft applications have already been demonstrated and reported.12

Similarly, the profile of a surface may also be altered photonically) 3-16One of mechanisms to photonically induce surface

deformation is based on stresses and strains generated in photosensitive materials by an interferometric pattern. The
mechanism is described in Fig I. Two beams interfere and form a periodic change in the refractive index in a film of a

photorefractive material. The changes in the refractive index are accompanied by periodic changes in material strain and
result in periodic deformations on the surface of the material (See Fig. la). A probe beam was used to detect these optically

generated surface corrugations. The periodic corrugations with amplitude of 6nm were observed and detected (Figs. lb and
lc). Proper selection of material would permit design and construction of a component with surface deformations

controllable by the optical interferometric pattern.

2.2. Signal Processing

In photonic sensing systems the journey of an optical signal ends at the surface of a photodetector, where the optical signal is
converted to an electrical one. Most photodetectors are square law detectors and are sensitive to a total amount of power that

falls on their surfaces. Thus, it is important in sensing systems operating in the wavelength domain to have a device capable

of reading the wavelength. Two wavelength reading techniques are being developed at the NASA Glenn Research Center.
Both techniques are interferometric in nature. The first one is based on a wavelength to RF conversion. It employs an equal

path interferometer, projector, and a focal plane array (CCD). The schematic of the experimental setup is shown in Fig. 2a.
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Twoopticalsourcesareusedsimultaneously,alightemittingdiode(LED)withthecentralwavelengthof820nmanda
HeNelaser.Figures2band2cshowsignalsfromtheCCD.Thesignalsoverlapin thetimedomain(Fig.2b)andaless
coherentlightsource,theLED,producesamorenarrowwavelet.Inthefrequencydomainthesignalsareseparated.The
separationof signalsinthefrequencydomainisclearlyseenonascreenofanelectronicspectrumanalyzer(Fig.2c).The
signalbelongingtoalightsourcewithashorterwavelength,theHeNelaser,isrepresentedinthefrequencydomainbya
peakatahigherfrequency.BecauseofalongercoherencelengthofthelightemittedfromtheHeNelaserthispeakhasa
significantlynarrowerbandwidththantheotheronethatbelongstotheLED.

Thesecondwavelengthdemodulationtechniqueinvolvesaconventionalunbalancedinterferometer.Theunbalancepermits
processingrapidchangesinthewavelengthlight.Toachievethebestperformancetheinterferometershouldbeproperly
designedandhaveanappropriateunbalance.Theprincipleofoperationofthesignalprocessingunitusedisshownin
Fig.3a.Forthewavelengthof 1300nmandthefull-widthathalf-powerbandwidth(FWHP)of0.3nmtheoptimumoptical
pathlengthunbalancewascomputedtobeabout2.l nun.Fig.3bshowsdependenceoftheinterferometersensitivityonthe
interferometeropticalpathdifference(unbalance).Thecurvehasamaximumvaluethatisduetothefinitecoherencelength
oftheopticalsignalreflectedbackbythegrating.

2.3. Interfaces

Interfacing of photonic components has several forms. One of the best known forms of interfacing is an electro-optic

interface which permits coupling of light from a laser or LED into optical fiber. Another form of interfacing is an optical
connector. To minimize the number of fiber-to-fiber connectors a connectorless junction technology is being developed by

the Glenn Research Center. The technology is based on an optical beam self-trapping in photosensitive polymers with light

induced modifications of the refractive index. 17-19 The principle is demonstrated in Fig. 4. A small amount of photosensitive

polymer gel is placed between two ends of optical fibers that have to be connected. Light is sent into the other two ends. The
wavelength of the entering light is within the spectral absorption band of the gel. The light helps the gel to solidify or to cure.

At the same time some light is being absorbed by the gel and in the process of absorption the refractive index of the gel

changes. If the refractive index decreases with absorption a channel would be formed similar to a waveguide. The
waveguide would also become an optical concentrator preventing the light from dispersing. Thus, by sending light from

opposite ends of fibers two waveguide like channels are formed that act as a bridge between two fibers. After a curing
process is complete a permanent channel is formed connecting the two fibers. The channel is then used to propagate optical

signals between the two fibers at operating wavelengths.

3. SYSTEMS WITH PHOTONIC ELEMENTS

2021
Integration is one of the biggest issues that photonic technologies face. With a rapid technological progress in MEMS and
wireless communication technologies, significant benefits may be obtained by combining these technologies with photonics.

Optical and optically powered MEMS, wirelessly excited and powered components, and other hybrid systems may provide
the maximum benefits.

3.1. Embedding of Sensors in High Temperature Polymer Matrix Composites

Packaging and embedding techniques represent another issue. At the GRC commercially available high temperature Bragg
gratings have been embedded in about 3 mm thick plates made of polymer matrix composite (PMC) materials. Information

about some high temperature polymer matrix composites developed at the Center may be found in Ref. 22.

The process used to embed fiber optic Bragg gratings in PMC involves several steps. During the first step a mold is prepared
using a commercially supplied prepreg consisting of graphite fiber fabric and polyimide thermoset resin cut and placed

together into a steel tool. In the mold, the prepreg is symmetrically placed between the following processing aids: non-porous
Teflon ®peel ply, 2 layers of E-glass, and porous Teflon ® peel ply. The non-porous plies are placed on the outside (mold-side)

of the ply lay-up. The porous peel plies sandwich the prepreg. Finally, an about 6 mm thick steel plate is placed on top of the

nonporous peel ply and the 8 plies of prepreg.

All plies of the prepreg are warped aligned in the mold, on top of a vacuum plate, with the fiber optic placed in the center of

the 8-ply stack. The fiber optic is protected from the steel mold closures so that a signal is continuously monitored throughout
the processing trial. The mold is covered in a large sheet 2 mil Kapton ®and secured with a metal frame to ensure a vacuum

during processing.
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Thesteelmoldcontainingthe8 plies of prepreg and the fiber optic are placed in a hydraulic press at room temperature. Stops
are inserted between the press platens to prevent excessive resin flow during the initial heating stages of the processing cycle.

Vacuum (6" Hg) is applied to the mold and the Kapton ®quickly conforms to the 6 mm thick tool containing the prepreg. The

press is heated at 5°F/minute until the mold.temperature reaches 300°F (about 149°C), then the vacuum is increased to 25"'

Hg. After that the press is heated up more at the ramp rate of 2°F/minute until the mold temperature reaches 450°F (about

232°C) and maintained at that temperature for 60 minutes. After the 60-minute hold at 450°F, pressure of 200 psi is applied

to the mold and the mold temperature is ramped up again to 600°F (about 310°C) at the same ramp rate of 2°F/minute. The

mold is than held at 600°F for 120 minutes and then cooled to 400°F (about 204°C) over three hours. The process is

described in Fig. 5. During this molding cycle, data from the embedded fiber optic Bragg grating was recorded using a

optical spectrum analyzer. A picture of the PMC panel with an embedded fiber optic Bragg grating is shown in the lower
right comer of the Figure. Fiber optic pigtails are clearly visible. The upper part of the Figure displays also recorded images

of an optical spectrum analyzer's screen. The images depict positions of spectrally encoded signals reflected by the

embedded grating at two temperatures, room temperature and 600°F.

The gratings survived the embedding process as well as numerous subsequent thermal cyclings from room temperature to

300°C. However, during the process of thermal cycling a hysteresis was observed. It presence was attributed to the fact that

the commercially available fiber was initially annealed at 300°C. An additional annealing and holding the fiber with the

grating at 420°C for 24 hours resulted in a somewhat smaller hysteresis. Fig. 6 shows results of thermal tests of a stand alone
fiber with a grating.

3.2. Fiber Interfacing and Connectorization

Components or panels with embedded fiber optic sensors would have fiber optic pigtails. A presence of the pigtails would
make manufacturing, transportation, and integration of components or panels very difficult. In addition to the fiber pigtails

being fragile, the real challenge would be to interconnect two panels, for instance, with fibers sticking out. Introduction of

novel photonic interfacing techniques shown in Fig. 7 may minimize these problems. Free space optical connectors (Fig. 7a)
are based on a simple concept of transmission of optical signals using bulk optics devices. A free space optical connector
consists of a set of two micro-optical assemblies. Each assembly is connected tO a mating end of an optical fiber and buried

into components of a structure along with the fibers. When the components are assembled the two micro-optical assemblies
form one u_ _th a Confinu0us transmission of signal from one fiber=io another_This approach may be applicable in a
relatively clean environment in systems that can tolerate significant van_atloiis in=the :Sig-nai levels.

Fig. 7c describes a hybrid interfacing technique that permits communicating through a wall. The technique may be applicable
for both embedded and surface mounted photonlc systems. It is based on converting optical signals into electromagnetic

signals at, for instance, radio frequencies. The electromagnetic signals propagate through the wall and are converted to the

optical ones on the other side of it.

The last two techniques use a phenomenon of forming waveguide like channels in photorefractive materials as described

above in Section 2.3. The first of them (Fig. 7b) permits across the seam interfacing of several embedded fibers. The other
one (Fig. 7d) enables splicing of a single fiber or ribbon cable without using mechanical connectors.

3.3. Vehicle Health Management
................ :2: : ,

Integrated vehicle health management (IVHM) is a complex of measures that gives the piloting crew and repair crew on the

ground the advance knowledge about the health conditions of various components, subsystems, and structures of the vehicle.
Also, IVHM provides information to control units about environmental and flight conditions necessary for accompfishing

safety and mission goals.

Phot0nic=vehicle health managementtech_ques that are being deVelOped couldbe eltherpassive or active: One passive

technique consists of a web of optical fibers that covers a structure of interest or a portion of it. Optical strain sensors

attached to the fibers detect slow varying changes in strain distribution in the structure. A signal processing algorithm

determines if these changes are associated with structural changes.

In an active approach, the web of fibers is replaced by a fewer number of fibers with sensors. An actuation unit is added to
provide an acoustical excitation of a structure. The active approach does not have to have a separate actuation unit. In some
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applicationstheacousticalexcitationmaybegeneratedbyacomponentitself.Forinstance,conditionsof apumpmaybe
evaluatedbymonitoringtheacousticemissionfromthepump.Sometechniquestodetectacousticemissionusingfiberoptic
sensorshavebeendescribedintheliterature.23

Figure8showsschematicallyallthreecasesdescribedabove.ThefirstcasedepictedinFig.8ahasacurvedpanel
instrumentedwithawebofembeddedfiberswithpassiveBragggratings.InFig8btheweboffibersisreplacedbyafewer
numberofsensorsandanactuatorisadded.Theactuatorgeneratesanacousticalsignalthatpropagatesthroughthestructure
andreachesthesensors.Anychangesin thestructurewouldchangethesignatureofthesignalpickedupbythesensors.

Thelastfigure,Fig8c,showsafiberopticBragggratingattachedto the casing of a pump. A set of acoustical signatures of a

pump properly operating at different flight and environmental regimes is stored in a computer memory bank. During the
flight, the acoustical signal emitted by the pump is detected by an optical sensor, then compared with the corresponding one

from the bank, and discrepancies are recorded. In case the discrepancies exceed tolerances an advanced warning would be

given to the flight control unit, flight crew', or the ground maintenance crew.

To demonstrate performance of an active health monitoring system a piezo-electric actuator is mounted on a surface of a

panel made of polymer matrix composite material with fiber optic Bragg grating imbedded in it. The grating responds to
acoustical waves in the plate generated by the vibrating piezo-electric actuator and modulates the wavelength of light that

reflects from it. The optical signal is sent to a wavelength detection unit that employs an unbalanced interferometer described
in section 2.2. of this paper. The schematic of the experimental system is shown in Fig. 9. The figure also displays the

signals associated with actuation and detection of periodic perturbations at l KHz.

4. SUMMARY

Introduction of photonic elements into smart systems offers numerous benefits. In addition to reducing weight and enhancing

safety it also opens new technological opportunities. Availability of components that change their shape in response to light
of a certain wavelength and have ability to generate and control corrugations on the surface of components using photons

would permit development of optically based smart structures and systems. Devices built on these phenomena could be
employed in such applications as, for instance, fuel and air injectors whose nozzle geometry is controlled by light. Boundary

layer controllers that use interactions of the air flow with optically driven and controlled surface corrugations represent

another application of photonic technology to smart aerospace systems.

Advanced signal processing devices and schemes that possess simultaneously high sensitivity and broad bandwidth would
detect transients and therefore be used for damage detection and evaluation. Their applications could also be extended into

such areas as detection of pulsed pressures. In compressors, circumferential pressure waves are indicators of a stall. They

occur at frequencms charactensnc for a given compressor." Early detectmn of these waves at Dven frequencms using fiber
optic sensors located along the inner circumference of the compressor casing would give an early warning about stall
conditions.

Optical fibers coated with photorefractive materials capable of forming fight guiding channels in themselves open new
opportunities in how fiber optic cables are repaired. The material would penetrate into areas where cracks in the fiber occur
and after exposure to fight at a certain wavelength form a permanent channel. Such a smart self-repairing optical fiber would

require a minimal human interference and increase significantly safety and reliability of airborne photonic systems.
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Fig. 1. Optical actuation:
a) Schematic of the two beam mixing with the probe beam;
b) Picture taken with a WYKO 2000 interferometer showing periodic surface corrugations with

about 6 nm peak-to-peak amplitude;

c) The data after Fast Fourier Transform of the raw data.
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Fig. 2. Signal processing scheme involving wavelength-to-RF conversion:
a) Schematic of experimental setup with two simultaneous light sources, HeNe laser (wavelength k,= 632 nm) and

light emitting diode LED (central wavelength _,= 820 nm);
b) Signals from the CCD array displayed in the time domain on the screen of oscilloscope (a more narrow wavelet

belongs to a less coherent light source, the LED);
c) Signals from the CCD array displayed in the frequency domain on the screen of a spectrum analyzer (a peak at a

higher frequency belongs to a light source with a shorter wavelength k,, the HeNe laser).
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Fig. 3. Processing of dynamic signals using unbalanced interferometer:

a) Schematic drawing of the interferometer;

b) Dependence of sensitivity to dynamic changes in wavelength on optical path difference of the interferometer.

Photosmas_ Polymer

Fig. 4. Schematic explanation of a connectorization process of two fibers using a phenomenon of a laser beam self trapping

in photosensitive polymers.
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Fig. 5. Fiber optic Bragg grating embedded in high temperature polyamide matrix composite plate.
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Fig. 6. Results of thermal tests of a high temperature fiber with FOBG (averaged over 3 runs):

a) Commercial fiber with FOBG annealed at 300°C;

b) Fiber with FOBG re-annealed at 420°C for 24 hours.
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A. FREE SPACE OPTICAL CONNECTIONS
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b ......

B. ACROSS THE SEA_ INTERFACES
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C. WIRELESS INTERFACE

Photore fractive Material F_er

D. CONNECTORLESS FIBER REPAIR

Fig. 7. Examples of novel photonic interfacing technologies:

A) Free space optical connections; B) Across the seam interfaces;

C) Wireless interface; D) Connectorless fiber joint.

____:t i.tator

G rati_lgs --_

Fibers / _/_

Grating

c)

/
Fibers

Fig. 8. Vehicle health management schemes:

a) Passive health management system; b) Active health management system;

c) Dynamic health management system (TERFENOL-D ® is a trademark of ETREMA Products, Inc.).
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Fig. 9. Bragg grating based fiber optic sensing system for measurements of periodic perturbations.
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